
Fuzzers like LEGO
by Andrea Fioraldi & Dominik Maier

@andreafioraldi, @domenuk

{andrea, dominik}@aflplus.plus

https://twitter.com/andreafioraldi
https://twitter.com/domenuk

LEGO

http://www.youtube.com/watch?v=fzERs45ME-g

Who We Are
● Hackademics (both PhD students)

Who We Are
● Hackademics (both PhD students)

● CTFers

Who We Are
● Hackademics (both PhD students)

● CTFers

● Part of the AFL++ team

AFL++ 3.0c released in Dec 2020

AFL++ 3.0c released in Dec 2020

The Truth(™) About Fuzz Testing
The best fuzzer is…

The Truth(™) About Fuzz Testing
The best fuzzer is…

...

The Truth(™) About Fuzz Testing
The best fuzzer is…

...

The Truth(™) about Fuzz Testing
The best fuzzer is…

...

The Truth(™) about Fuzz Testing
The best fuzzer is…

...

The Truth(™) about Fuzz Testing
The best fuzzer is…

...

The Truth(™) about Fuzz Testing
The best fuzzer is…

...

The Truth(™) about Fuzz Testing
The best fuzzer is…

...

The Truth(™) about Fuzz Testing
The best fuzzer is…

...

The Truth(™) about Fuzz Testing
The best fuzzer is…

...

The Truth(™) about Fuzz Testing
The best fuzzer is…

...

The Truth(™) about Fuzz Testing
The best fuzzer is…

...

The Truth(™) about Fuzz Testing
The best fuzzer is…

...

The Truth(™) About Fuzz Testing
The best fuzzer is…

...

The Truth(™) About Fuzz Testing
The best fuzzer is…

your custom fuzzer

tuned for your specific use case & target

adapted to your specific needs

with custom mutations and concepts, ...

How to Create a Fuzzer Then?

● Fork an existing fuzzer (the n-th AFL-something)

● Create a custom fuzzer from scratch

Custom Fuzzer Engineering Issues
● Lack of code reuse, you will have to spend a lot of time in

adapting different techniques from different fuzzers

Custom Fuzzer Engineering Issues
● Lack of code reuse, you will have to spend a lot of time in

adapting different techniques from different fuzzers

● Reinventing the wheel, you will code the same code to do that

same thing that all others do again and again

Custom Fuzzer Engineering Issues
● Lack of code reuse, you will have to spend a lot of time in

adapting different techniques from different fuzzers

● Reinventing the wheel, you will code the same code to do that

same thing that all others do again and again

● Naive design, typically just a mutator

Custom Fuzzer Engineering Issues
● Lack of code reuse, you will have to spend a lot of time in

adapting different techniques from different fuzzers

● Reinventing the wheel, you will code the same code to do that

same thing that all others do again and again

● Naive design, typically just a mutator

● Scaling, you cannot adapt it easily to multi-core or -machine

Our Solution: A Fuzzing Library
We aim to build a library that can be used to develop custom

fuzzers quickly and reusing even complex techniques easily.

Think about Tensorflow or LLVM, but for fuzzers.

This Talk
● We present concepts that abstract properties of fuzzers

● We give some examples

● We translate them to code

● The community profits

http://www.youtube.com/watch?v=mdCc6ywQYOM

Observer
Provides information about some properties of a target run.

Rerunning the target with the same

input will (usually*) yield the same

Obeserver state.

* Some impure observers alter the target to

work, for example breakpoint-based coverage

Observer: Coverage Map
AFL-like shared memory that increases a counter at the hashed

position of each edge

+10x41414141: jmp 0x42424242

hash_edge(0x41414141, 0x42424242)

Observer: Execution Time
The time needed to execute the testcase.

let start_time = get_cur_time();

run_target();

let elapsed_time = get_cur_time() - start_time;

Observer: Reachability
Sets booleans for each interesting point reached in the target

We can use annotations in the source code like:

void func() {

 ...

 FUZZER_TARGET_POINT();

}

Executor
The Executor runs the target.

By its nature, the choice of

executor is target-specific.

The executor associates target

with observation channels.

Executor: In Memory
An In-Memory executor simply calls a function or harness in

the linked target for each run. Known from Libfuzzer.

int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {

 ...

}

Executor: Forkserver
Another executor is the AFL

forkserver. The target runs as

(forked) process outside of the

actual executor, communicating

via pipes, shared maps, files.

Executor: Forkserver
The AFL-like forkserver executor uses pipes to control the

external target.

AFL Target
fork server

Target child

ctl_pipe

st_pipe

fork()

wait()

Feedback
The Feedback reduces the state of the observation

channels after a run to an “is_interesting” fitness.

The rates given by all the feedbacks are then used

to decide if the input is worth keeping.

Feedback: Maximization Map
Feedback that tries to maximize the map entries. It needs a

map Observer, and an internal map to keeps track of the

maximum values seen so far.

Feedback: Maximization Map (Coverage)
Example: coverage map of AFL

⇒ AFL-like coverage observer + max map feedback = <3

Feedback: Maximization Map (Coverage)
Example: coverage map of AFL

let mut fitness = 0;

for i in 0..map_size {

 if observer_map[i] > history_map[i] {

 history_map[i] = observer_map[i];

 fitness += 1;

 }

}

Anther usage: maximization of allocation sizes to spot

out-of-memory bugs. => same feedback, different observer.

void* malloc(size_t size) {

 FUZZER_ALLOC_REPORT(__builtin_return_address(0), size);

 return real_malloc(size);

}

Feedback: Maximization Map (Allocs)

Objective Feedback
A normal feedback tells the fuzzer:

"this is interesting, add to the corpus, mutate here!"

In contrast, the Objective decides if an input satisfies some

objective for this run.

Example: finding crashing inputs.

Objective Feedback: Reachability
Another objective: reach a specific program point (using the

reachability observation channel).

⇒ Inputs that make the program covering that

point are added to the objective corpus.

Input
An Input is the entity that

represents the testcase. It

doesn’t have to be in the same

format expected by the

program, but rather is in a

structure that can be easily

manipulated.

Input: Abstract Syntax Tree
An example of complex input

is an AST, a structure that

can be easily handled by a

mutator event if the target

expect a bytes array

Image from https://github.com/RUB-SysSec/nautilus

Corpus
The Corpus is the entity that collects

testcases that are interesting for one or

more feedbacks, defines how they are

related to each other and how to feed the

fuzzer with those inputs when requested.

The items stored in the corpus are not

only the inputs but also the Metadata like

execution time.

Corpus: Random Corpus
A naive corpus can be just a vector that provides a random

entry to the fuzzer when requested.

fn get(&self, rand: Random) -> &Testcase {

 self.testcases[rand.below(self.testcases.len())]

}

Corpus: Queue Corpus
Another example of Corpus is a queue (AFL for instance).

fn get(&mut self) -> &Testcase {

 let t = self.testcases[self.pos];

 self.pos = (self.pos +1) % self.testcases.len();

 t

}

Mutator
A Mutator is an entity that takes one or more inputs and

generates a new derived one.

Mutator: Bitflip Mutator
This simple mutator just flip a bit in the input.

1 0 0 1 0 1 1 0 1

1 0 0 1 0 0 1 0 1

Mutator: Scheduled Mutator
- Applies a set of mutations.

- The number and kind of mutations is decided by a scheduler.

- In the old-skool AFL Havoc mutator, the number of mutations is

a bounded random number, the chosen mutations are random.

- More advanced solutions like MOpt employ scheduling

algorithms.

Generator
A Generator generates new inputs from scratch, according to

individual parameters.

⇒ Initial corpus, or part of a mutator.

Generator: Random Array
Initial testcases can be generated simply as random bytes

array, or almost random following some rules (e.g. just

printable bytes).

Generator: Grammar Generator
A generator using a grammar

specification creates valid

inputs from scratch. In

Nautilus, it is used also as

component of the mutator as

one of the possible mutations

is subtree generation.

Image from https://github.com/RUB-SysSec/nautilus

Stage
A Stage is an entity that operates some actions on a single

testcase.

Stage: Mutational Stage
- Evaluates the generated input several times in a loop

- Num Iterations can be controlled with a scheduling algorithm.

=> Havoc stage in AFL applies the Havoc mutator to the current

queue entry several times, the number of

iteration depends on the perf score.

⇒ Fuzzers like AFLFast employ different

algorithms to compute this perf score.

Stage: Analysis Stage
An analysis stage runs the input with an executor that

performs taint tracking. The information extracted is then

attached to the testcase as Metadata.

+ taint

Stage: Trim Stage
Trimming stage of AFL reduces the size of inputs while

maintaining the same coverage.

Additional Components
Beside these theoretical entities in Feedback-driven Fuzzing,

a modern framework needs more components to glue all the

blocks.

RNG, EventMgr, State, …?

Random Number Generator
As fuzzing is a technique derived from random testing, the

generation is random numbers is an important matter. We choose

to abstract the implementation to of the PRNG to allow the

user to pick the best for their needs, from the faster to the

one with more soundness.

State
The fuzzer evolves entities, corpus and feedbacks.

We define State as the sum of all of the evolving parts of the

fuzzer.

Event Manager
We can define in the fuzzing

loop some interesting event

that we may want to observe

in an abstract way.

So we defined an event

manager that provides

implementations of event

handlers.

Events
Common events are when a new testcase if added to the

corpus, when the program crashes or when there is a timeout.

A very naive event manager just logs these events to inform

the user about the changes in the State.

Event Manager: Multicore Sync
A less naive usage of the

event manager is for state

synchronization between

fuzzers. We broadcast

information about fuzzing

progress. For instance, we

exchange testcases between

fuzzers in this way.

Then Code?
Initial implementation in C by Rishi Ranjan during AFL++ GsoC

-> No generics, hard to maintain -> Initial rewrite in C++

-> Lots of virtual functions, lots of options, crazy templates

-> 2nd rewrite (initially PoC) in Rust

⇒ Some language features missing, but legible and performant

Then Code?
Observation: Fuzzers have a loop

and state, similar to games.

We took inspiration from the

RustConf ‘18 Game Dev keynote.

We translated fuzzing the concept

to Rust patterns and code.

Abstractions in Rust
Can we model entities as classes like we do in C++ or Java?

The Game State in Rust
type Entity = GenerationalIndex;
type EntityMap<T> = GenerationalIndexArray<T>;

struct GameState {
 assets: Assets,
 entity_allocator: GenerationalIndexAllocator,
 entity_components: AnyMap,
 players: Vec<Entity>,
 ...
}

https://kyren.github.io/2018/09/14/rustconf-talk.html

https://kyren.github.io/2018/09/14/rustconf-talk.html

The Fuzzer State
struct State {

 feedbacks: Vec<Box<dyn Feedback>>,
 executor: Box<dyn Executor>,
 corpus: Box<dyn Corpus>,
 stages: Vec<Box<dyn Stage>>,

// allow the extension of State
 metadatas: AnyMap,

}

AnyMap for MetaData
struct Testcase<I> {
 input: I,
 metadatas: AnyMap
}

struct State {
 ...,
 metadatas: AnyMap,
}

Haskell-like Tuples for static sets
struct State {
 feedbacks: FeedbacksTuple,
 metadatas: AnyMap,
}

struct Fuzzer {
 stages: StagesTuple,
}

fn fuzzer_loop<EM, E, C>(&mut EM, &mut E, &mut C,
 &mut Fuzzer, &mut State);

Serde all the things!
trait Input: Serialize + DeserializeOwned {
 …
}

trait Observer: Serialize + DeserializeOwned {
 …
}

Send a lot of stuffs on the wire without much effort!

Scaling
- Just spawning a thread enables glibc mutex

- So each fuzzer instance is a process

- Whenever new interesting testcases are

discovered, they are synced (lock-free)

over shared map channels

- There is a marginal one-time overhead of

serialization per testcase, afterwards no

more syncing is involved

- If observers are the same for each client,

we can reuse them, else we rerun testcase

Scaling
- Little Kernel Load

- Pretty decend speed

- libpng: > 10mio execs/s

?Wait, so only Rust?
● Of course not, only its core.

● Our test harnesses already include

● C

● C++

● Emulator (QEMU)

● The lib is no_std + alloc

⇒ should even run in kernels, embedded, …
● Yes, it needs clang to build once, but can then

be linked against gcc, etc.

● Future: Custom LEGO parts may be possible in C, or even Python

Open Source… soon. (sorry :))
● Old C lib at github.com/aflplusplus/libafl

● Rust rewrite _INCOMING_ (q1 2021 ;))

● Let us know if you’re interested

to test-drive this early

● AFL++ will stay around for

“normal” use-cases, potential

porting to rust in $future(?)

Conclusion
● We presented some fuzzing building blocks for our lib

● Implementation will be out very soon(™)

● With good defaults

● Follow github.com/aflplusplus

● or us (andreafioraldi, domenukk)

Thanks y’all
Have a nice rC3

