
LIBAFL LIBFUZZER: LIBFUZZER on top of
LIBAFL

Addison Crump
CISPA

addison.crump@cispa.de

Andrea Fioraldi
EURECOM

fioraldi@eurecom.fr

Dominik Maier
Google Inc.

dmnk@google.com

Dongjia Zhang
The University of Tokyo

toka@aflplus.plus

Abstract—General-purpose fuzzing has come into the public
eye, with many researchers developing new fuzzers to improve
on the state of the art. LIBAFL, developed by the group which
originally made AFL++, offers researchers the ability to develop
fuzzers at a component level, allowing researchers to simply
develop their own components rather than modifying an existing
fuzzer. This allows for more straightforward comparisons of
fuzzers, allowing researchers to experiment with the removal
and addition of individual components, without compromising
on the flexibility of fuzzer development. To demonstrate this
flexibility and offer alternative frontends to the community, we
developed two fuzzers: LIBAFL LIBFUZZER and AFLRUSTRUST,
the former of which is discussed here as a drop-in replacement
for LIBFUZZER and the latter in a sister report as a drop-in
replacement for AFL++. We find that LIBAFL LIBFUZZER
performed very well on the coverage benchmarks while
struggling with the bug-based benchmarks conducted in the
SBFT fuzzing competition, and discover and analyse which
fuzzer features and bugs led to this underperformance.

I. INTRODUCTION

The Fuzzing community is very active and prolific, with
an always growing number of proposed ideas and prototypes
[1]. In practice, however, for generic fuzzing three main
engines are widely used and are AFL++ [2], that is gradually
replacing AFL [3], LIBFUZZER [4] and HONGGFUZZ [5].

As a spin-off of AFL++, in the last two years we started
developing a new fuzzing framework to cope with the
extensibility problem of this widely used but monolithic
fuzzer. This framework, LIBAFL [6] is not a tool by itself
but rather a collection of Rust libraries to write fuzzers.
While power users appreciate the flexibility of writing custom
fuzzers with LIBAFL, other users with simpler needs are still
recommended to use AFL++.

LIBFUZZER [4], being integrated with LLVM, is a very
commonly used fuzzer runtime. Recently, however, it has been
put on maintenance mode [7]. To offer continued support and
newly-discovered techniques to LIBFUZZER-oriented fuzz har-
nesses, we developed LIBAFL LIBFUZZER, a near-complete
replacement for LIBFUZZER with support for the most com-
mon features without introducing new build requirements. At
the time of the competition, it was still in a developmental
state.

II. LIBFUZZER ON FUZZBENCH

We want to replicate the configuration of LIBFUZZER that
is used in FuzzBench to demonstrate the compatibility of

LIBAFL LIBFUZZER with LIBFUZZER harnesses. Specifi-
cally, LIBAFL LIBFUZZER requires no additional instrumen-
tation over LIBFUZZER and intentionally restricts itself to
LIBFUZZER compatible mutators and instrumentation; where
LIBFUZZER can be used, so too can LIBAFL LIBFUZZER.

To this end, we use not only the same instrumentation,
but also the very same flags from the libfuzzer fuzzer
and provide support for LLVMFuzzerCustomMutator
and LLVMFuzzerCustomCrossover. With the fuzzer
in full operation, the only observable distinction between
LIBFUZZER and LIBAFL LIBFUZZER to both the user and
the system under test is the output format and improved
performance.

III. IMPLEMENTING LIBAFL LIBFUZZER

As described in the LIBAFL paper [6], several components
must be defined to build a fuzzer based on LIBAFL.

A. Executor

LIBAFL LIBFUZZER, like LIBFUZZER, will use in-process
fuzzing and launch new jobs upon a crash or timeout. The
jobs will be launched by a simple forking manager, which
is the standard launcher for using LIBAFL unparallelised.
The executor will accept an input from the scheduler and
execute it via a wrapper to LLVMFuzzerTestOneInput.
The wrapper catches C++ exceptions to prevent unnecessary
restarts when discovering exception-based crashes. Other than
this, the executor is a very standard LIBAFL-style executor.

B. Feedback

LIBAFL LIBFUZZER offers a large selection of feedback
options for maximising compatibility. For SBFT, we will
collect map coverage feedback and time feedback on all exe-
cutions and comparison log feedback on the tracing stages (see
III-D3 for details). These feedbacks will be used to determine
interestingness and infer data to be used by mutators.

To determine if a fuzzer has identified a fuzzer objective,
we utilise crash and timeout feedbacks to determine if the
program has crashed or hung during execution. If the target
does either, it is considered a fuzzing solution and added to
the corpus of solutions.



C. Scheduler

To ensure inputs are selected to minimise time and
maximise the potential of each input, we use an AFL-style
“fast” power schedule to select high energy inputs. This
schedule is wrapped with a scheduler which employs a corpus
minimisation strategy to select inputs which cover the set of
observed indices while minimising their execution time.

D. Stages

For SBFT, the fuzzer will leverage many different stages:
1) Generalization and GRIMOIRE Mutation: Several

fuzzbench targets are primarily structured text-based inputs.
When provided with a corpus, we automatically determine if
it is primarily text-based and, if so, will enable the GRIMOIRE
mutation strategy [8]. Otherwise, GRIMOIRE-style mutations
will be disabled and these stages will be skipped. This is
discussed in further detail in III-E.

2) Calibration: To identify and prioritise inputs which are
well-behaved and most interesting, we utilise a calibration
stage which identifies coverage bitmap instability and typical
execution times. This information is forwarded to the
scheduler which will use it to prioritise stable, fast-executing
inputs that maximise coverage map exploration.

3) Tracing: When comparison logging is enabled, the
tracing stage will execute the target and collect comparisons
performed by the target. This information will later be used
to replace regions in the original input with the values they
were detected as compared against. This is discussed in
further detail in III-E.

4) Mutational: LIBAFL LIBFUZZER employs many mu-
tational stages which are enabled based on the presence of
custom mutators and custom crossover methods provided by
the system under test. They are discussed in detail in the next
section.

E. Mutator

In order to fully support targets which use LIBFUZZER,
we offer mutators to the system under test when they use
their own mutations and when they do not. In this way, we
maximise our compatibility.

1) Standard Mutation: With LIBFUZZER,
a system under test may provide the meth-
ods LLVMFuzzerCustomMutator and
LLVMFuzzerCustomCrossover to provide custom
mutations and custom crossover mutations, respectively [9].
When neither of these methods are detected, we utilise
an AFL++-style scheduled mutator1 [2] with LIBAFL’s
AFL-style havoc mutations [6], including crossover2.

1In the first round, we utilised MOPT, but switched to a standard scheduled
mutator for the second round. It is unclear what performance impact this had
on the overall performance at this time, and will likely become optional in
a future iteration.

2This feature was in a bad state during the competition, as we did not
expect these custom mutators to be present in targets for the competition.
Though non-functional during the competition, we have planned dedicated
support as custom mutations are used by OSS-Fuzz [10] and in “real”
campaigns with LIBFUZZER harnesses.

2) Custom Mutation, No Crossover: When only
LLVMFuzzerCustomMutator is detected, the mutator
used only invokes the target-provided mutator. This mutator
may internally refer to LLVMFuzzerMutate to access
LIBFUZZER’s mutator. We instead provide an AFL++-style
scheduled mutator [2] with LIBAFL’s AFL-style havoc
mutations [6], but with crossover disabled as to not inject raw
corpus entries into whatever the target may be mutating. In-
stead, the havoc crossover mutations are executed as a separate
mutation stage, since we cannot guarantee the user intends to
use bytes from raw corpus entries within their custom mutator.

3) Custom Crossover, No Mutation: When only
LLVMFuzzerCustomCrossover is detected, the standard
mutator is used with havoc mutations, excluding crossover.
The custom crossover provided by the user is invoked in a
separate pass, with the same standard mutator provided if it
is invoked by the custom crossover mutator.

4) Custom Mutator and Crossover: If
both LLVMFuzzerCustomMutator and
LLVMFuzzerCustomCrossover are detected, the
strategies mentioned in and are combined, deferring to the
custom mutators provided by the user.

5) Input2State: When comparison logging is enabled,
byte sequences in the inputs which were detected in
failed comparisons by the tracing stage will be replaced
with the intended comparison. Additionally, LIBFUZZER’s
“interceptor” methods for common comparison methods
(e.g., memcmp) are implemented to intercept and inspect
comparison method parameters and results. This mutation
allows us to overcome the issue of complex comparisons
which prevent further exploration in the target. This mutator
also conditionally uses the custom mutator.

6) GRIMOIRE: When the target’s inputs are detected to
be primarily structured text, GRIMOIRE-style mutations [8]
will be used to selectively identify and replace tokens, byte
sequences, and other text-based data within the input to
maximise exploration of textual programs.

IV. EVALUATION RESULTS

In the SBFT final evaluation, LIBAFL LIBFUZZER
performed reasonably well, but had notable issues on
several targets. The results for both the bug3 and coverage4

are publicly available. These results speak largely for
themselves in both rank and performance, so the discussion
below deals primarily with identifying in what aspects
LIBAFL LIBFUZZER must improve.

Our primary goal of outperforming LIBFUZZER was
largely achieved, excluding by rank in the bug-based
experiment (in which LIBAFL LIBFUZZER ties with
LIBFUZZER). We discuss potential reasons for this unexpected
underperformance in the next section.

3https://storage.googleapis.com/www.fuzzbench.com/reports/experimental/
SBFT23/Final-Bug/index.html

4https://storage.googleapis.com/www.fuzzbench.com/reports/experimental/
SBFT23/Final-Coverage/index.html



A. Bug Benchmark Weaknesses

LIBAFL LIBFUZZER struggled in the bug
benchmarks, finding (in most cases) all of the
bugs discovered by others, excluding two bench-
marks: assimp_assimp_fuzzer_4d451f and
file_magic_fuzzer_2d5f85. In both of these
benchmarks, LIBAFL LIBFUZZER underperformed due
to a bug in the OOM handling, causing the fuzzer to
terminate and not perform any further fuzzing. While
disappointing, it is good that we can clearly point to what is
failing and remedy this issue in the future (in this particular
case, a two- or three-line change to how OOMs are detected
is all that is necessary). We discovered these issues via logs
provided by the competition organisers5.

Excluding these two benchmarks, LIBAFL LIBFUZZER
outperforms or has equal performance in overall bug
discovery when compared to all other fuzzers undergoing
trials. It performed roughly in the middle of the pack in terms
of when these bugs were discovered, indicating that the corpus
or mutation scheduling strategy used may not be optimal.

B. Coverage Benchmark Weaknesses

LIBAFL LIBFUZZER generally performed well in the cov-
erage experiment, but had a low average normalised score. No-
tably, LIBAFL LIBFUZZER had the highest achieved median
score (shared by hastefuzz and aflplusplusplus). This indicates
the presence of one to many outliers, which we found to be:

1) draco_draco_pc_decoder_fuzzer –
“Interceptor” functions did not work correctly, preventing
the Input2State mutator (III-E5) from solving the header
magic correctly.

2) dropbear_fuzzer-postauth_nomaths – Fuzzer
harness contained a LLVMFuzzerCustomMutator,
but the LIBAFL LIBFUZZER code which handled
this was in a bad state at the time of competition
(de-prioritised as it was not considered in-scope for the
competition).

3) proj4_proj_crs_to_crs_fuzzer – Input shape
for this target is two lines of floating point numbers;
LIBAFL LIBFUZZER is generally optimised for byte
manipulation rather than string manipulation, and
generally had worse performance on this target.

The issues which caused the first two targets to underper-
form so dramatically are being resolved, and will be corrected
by the time of the workshop. We are exploring options for
string-specialised mutations, but how such mutators will be
implemented is not known at the time of writing.

V. SUMMARY

While LIBAFL LIBFUZZER does not propose new fuzzing
capabilities or special features unavailable in other fuzzers,
it does provide a fuzzer runtime which offers near-complete
compatibility with LIBFUZZER, one of the most widely used

5https://storage.googleapis.com/fuzzbench-data/index.html?prefix=2023-
03-06-sbft23-bug/experiment-folders/

fuzzers. With developers able to easily switch out to a new
option with near-complete compatibility, we provide support
for most fuzzing configurations that rely on LIBFUZZER,
which has since entered maintenance mode. Additionally,
by utilising LIBAFL, we offer developers access to modern
fuzzer algorithms without the need to dramatically change
their build configurations or add new tools.

We are very pleased with the results, despite the setbacks
that the fuzzer encountered, and look forward to improving
the tool for future use in fuzzing campaigns as a LIBFUZZER
alternative.

VI. ACKNOWLEDGEMENTS

This work was supported by the European Research
Council (ERC) under the consolidator grant RS3 (101045669).
Additionally, we would like to thank Dongge Liu and Jonathan
Metzman especially for their support with Fuzzbench during
the competition, as well as Marc Heuse (“van Hauser”) for
his insight on potential reasons for performance differences
between fuzzers.

REFERENCES

[1] V. M. Manes, H. Han, C. Han, S. Cha, M. Egele, E. J. Schwartz, and
M. Woo, “The art, science, and engineering of fuzzing: A survey,” IEEE
Transactions on Software Engineering, vol. 47, no. 11, pp. 2312–2331,
nov 2021.

[2] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combining
incremental steps of fuzzing research,” in 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX Association, Aug. 2020.

[3] M. Zalewski, “American Fuzzy Lop - Whitepaper,” https:
//lcamtuf.coredump.cx/afl/technical details.txt, 2016, [Online; accessed
10 April. 2022].

[4] LLVM Project, “libFuzzer – a library for coverage-guided fuzz testing.”
https://llvm.org/docs/LibFuzzer.html, Sep. 2018, [Online; accessed 10
April. 2022].

[5] R. Swiecki, “Honggfuzz,” https://github.com/google/honggfuzz, [Online;
accessed 10 April. 2022].

[6] A. Fioraldi, D. Maier, D. Zhang, and D. Balzarotti, “LibAFL: A
Framework to Build Modular and Reusable Fuzzers,” in Proceedings of
the 29th ACM conference on Computer and communications security
(CCS), ser. CCS ’22. ACM, November 2022.

[7] LLVM Project, “libFuzzer - Status,” https://llvm.org/docs/LibFuzzer.
html#id14, 2022, [Online; accessed 13 Jan. 2023].

[8] T. Blazytko, C. Aschermann, M. Schlögel, A. Abbasi,
S. Schumilo, S. Wörner, and T. Holz, “GRIMOIRE:
Synthesizing structure while fuzzing,” in 28th USENIX Security
Symposium (USENIX Security 19). Santa Clara, CA: USENIX
Association, Aug. 2019, pp. 1985–2002. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity19/presentation/blazytko

[9] Google, “Structure-Aware Fuzzing,” https://github.com/google/fuzzing/
blob/master/docs/structure-aware-fuzzing.md#example-compression,
[Online; accessed 20 Jan. 2023].

[10] “Google OSS-Fuzz: continuous fuzzing of open source software,”
https://github.com/google/oss-fuzz, [Online; accessed 10 April. 2022].


