
AFLrustrust: A LibAFL-based AFL++ prototype
Andrea Fioraldi

EURECOM
fioraldi@eurecom.fr

Dominik Maier
Google Inc.

dmnk@google.com

Dongjia Zhang
The University of Tokyo

toka@aflplus.plus

Addison Crump
CISPA

addison.crump@cispa.de

Abstract—In this paper, we present a first attempt at rewriting
the widely used fuzzer AFL++ as a frontend of LibAFL, our
new framework for fuzzers development. This prototype,
AFLrustrust as it is written in the Rust programming language,
was evaluated in the SBST’23 Fuzzing Competition with great
results even being just a first attempt with missing components
that are still under development.

I. INTRODUCTION

The Fuzzing community is very active and prolific, with an
always growing number of proposed ideas and prototypes [1].
In practice, however, for generic fuzzing there are three
main engines that are widely used. These are AFL++ [2],
which is gradually replacing AFL [3], LIBFUZZER [4] and
HONGGFUZZ [5].

As a spin-off of AFL++, over the last two years, we
developed a new fuzzing framework to cope with the
extensibility problem of this widely used, but monolithic
fuzzer. This framework, LIBAFL [6] is not a tool by itself
but rather a collection of Rust libraries to write fuzzers.
While power users appreciate the flexibility of writing custom
fuzzers with LIBAFL, most users still prefer AFL++ for its
out-of-the-box experience that fits most use-cases well.

To bridge the gap between our two projects, and solve the
problem of adding additional fuzzing algorithms to AFL++,
we plan to rewrite AFL++ as a frontend of LIBAFL. While
this process will take many months, we can already provide
a LIBAFL-based fuzzer that mimics AFL++, just without
the many command line options the main project provides to
customize the fuzzing behavior.

II. AFL++ ON FUZZBENCH

Our goal is to faithfully replicate the configuration of
AFL++ that is used in FuzzBench, as it is the best performer
in a generic setup.

This configuration consists of the modified SanitizerCover-
age trace-pc-guard module shipped in AFL++ as part of
the LLVM-based instrumentation with afl-clang-fast.
Here, the AFL++ edge coverage logging routine is inlined
in the LLVM IR, while still using the guards generated with
trace-pc-guard. This pass breaks the direct edges of the
Control Flow Graph in each function, inserting an intermediate
basic block and this allows to precisely count the edges. The
coverage is non-colliding: AFL++ adapts the size of the shared
coverage map to the number of instrumented edges, and thus
it doesn’t suffer from the well-known collision problem.

The other enabled option is the compilation of a secondary
binary with the CmpLog instrumentation. The second binary
logs the content of each comparison instruction and each
routine with two pointers as arguments in a shared memory
region, from which the fuzzer can read. AFL++ can use
this runtime information to run an enhanced version of the
REDQUEEN [7] mutator.

The last option, dict2file, extract the constants
operators used in comparisons-related functions such as
strcpy during compilation. These tokens are then used to
build a dictionary for the fuzzer.

III. IMPLEMENTING AFLRUSTRUST

As described in the LIBAFL paper [6], several components
must be defined to build a fuzzer based on LIBAFL.

A. Executor

To emulate the AFL++ behaviour, the executor that must
be used is a forkserver. The forkserver implementation
in LIBAFL supports the binaries compiled with
afl-clang-fast from AFL++ and their advanced
features such as shared memory input delivery and CmpLog
instrumentation.

B. Feedback

The feedback used is the maximization of each entry of
a coverage map. The coverage map is the one created by
the AFL++ target binary. It is exposed to LIBAFL with a
shared-memory-based map observer. As objective, we simply
consider every crashing input.

C. Mutator

The mutator is based on MOPT and schedule two sets of
operations available in LIBAFL, the bit-level havoc mutations
and the token-based ones in order to use an user-supplied or
autogenerated dictionary – with dict2file in this case.

D. Scheduler

The next input to fuzz is chosen by reusing the same algo-
rithms of AFL++, reimplemented in LIBAFL. Corpus culling
is done by selecting a minimal set of testcases covering every
edge seen so far with a weighted prioritization based on the
testcase length and the execution time. The selection from this
pool of testcases is then performed with the AFL++ weighted
scheduler using the explore energy assignment scheme [8].



E. Stages

The stages that compose the fuzzer are four, starting with
calibration, the stage used to measure stats about the current
testcase such as stability and average execution time. Then,
a tracing stage is used to run the target under a second
forkserver executor with a CmpLog enabled binary to collect
the cmp traces into the fuzzer metadata. After this one, and
depending on it, there is the input-to-state stage that uses
the CmpLog metadata to match tokens in the input with the
various I2S mutators. In the end, a mutational stage with the
classic havoc mutations is used and the energy is assigned
using the power schedule from the metadata generated with
the weighted scheduler.

IV. SBST’23 COMPETITION RESULTS

The SBST’23 fuzzing competition is composed of two
experiments in which AFLrustrust was evaluated versus 11
fuzzers, AFL++ included.

The first experiment 1 is coverage-based in which the
fuzzers are compared using the uncovered branch coverage
over 23 hours on 38 different programs from OSS-Fuzz [9].

In terms of average rank, AFLrustrust placed 5th, and in
terms of average normalized score2 it took the 4th position.
In both the ranking, it was really close to AFL++ which took
a position in front of our tool in both the scores.

The second experiment 3 is bugs-based in which the fuzzers
are evaluated in their ability to discover crashes that are
linked to bugs in 15 vulnerable applications from OSS-Fuzz
during 23 hours runs.

In terms of average rank, AFLrustrust wins the first position
this time and the second place, with a tie in the score with
the first fuzzer Pastis which is a hybrid fuzzer while our
approach is purely based on coverage-guided fuzzing, in the
average normalized score 4 ranking.

While the performance on the bugs-based dataset seems
great, we believe that our tool was penalized in the
coverage-based experiment due to the score 0 assigned to
the zlib_zlib_uncompress_fuzzer benchmark. For
an unknown reason, the fuzzer failed to start the experiment
with this target program but we could not replicate the failure
locally as AFLrustrust builds and runs fine this zlib fuzzer.

V. DISCUSSION

The proposed fuzzer based on LIBAFL is a first attempt at
the upcoming rewriting of AFL++ as a frontend of LIBAFL
and thus may be incomplete or even with buggy components.
In security research, often the best fuzzer is not the one

1https://storage.googleapis.com/www.fuzzbench.com/reports/experimental/
SBFT23/Final-Coverage/index.html

2This score is based on the average of per-benchmark scores, where the
score represents the percentage of the highest reached median code coverage
on a given benchmark.

3https://storage.googleapis.com/www.fuzzbench.com/reports/experimental/
SBFT23/Final-Bug/index.html

4This ranking is based on the average of per-benchmark scores, where the
score represents the percentage of the highest reached median bug coverage
on a given benchmark.

that finds slightly more coverage than the others but the one
that fits the user needs, and LIBAFL aims at this. On the
other hand, beginners and developers need an off-the-shelf
environment that can fuzz a target with a minimal setup,
as AFL does, and an AFL++ clone based on LIBAFL can
provide the best of both worlds.

The results of the fuzzing competition shows that
AFLrustrust shines even if it is just a prototype. The lack of
uncovered coverage compared to the original tool, AFL++,
is due to the missing implementation of the input-to-state
mutator in the same advanced way as AFL++ which includes
advancements from REDQUEEN [7], WEIZZ [10] and others
original algorithms to approximately solve branch constraints
developed during the years. This is now a work in progress in
LIBAFL and an equivalent mutator are under development and
in the roadmap of the rewrite of AFL++ on top of LIBAFL.

REFERENCES

[1] V. Manes, H. Han, C. Han, S. Cha, M. Egele, E. J. Schwartz, and
M. Woo, “The art, science, and engineering of fuzzing: A survey,”
IEEE Transactions on Software Engineering, no. 01, oct 5555.

[2] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combining
incremental steps of fuzzing research,” in 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX Association, Aug. 2020.

[3] M. Zalewski, “American Fuzzy Lop - Whitepaper,” https:
//lcamtuf.coredump.cx/afl/technical details.txt, 2016, [Online; accessed
15 March. 2023].

[4] LLVM Project, “libFuzzer – a library for coverage-guided fuzz testing.”
https://llvm.org/docs/LibFuzzer.html, Sep. 2018, [Online; accessed 15
March. 2023].

[5] R. Swiecki, “Honggfuzz,” https://github.com/google/honggfuzz, [Online;
accessed 15 March. 2023].

[6] A. Fioraldi, D. Maier, D. Zhang, and D. Balzarotti, “LibAFL: A
Framework to Build Modular and Reusable Fuzzers,” in Proceedings of
the 29th ACM conference on Computer and communications security
(CCS), ser. CCS ’22. ACM, November 2022.

[7] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“REDQUEEN: fuzzing with input-to-state correspondence,” in 26th
Annual Network and Distributed System Security Symposium, NDSS,
2019. [Online]. Available: https://www.ndss-symposium.org/ndss-
paper/redqueen-fuzzing-with-input-to-state-correspondence/

[8] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-
based greybox fuzzing as Markov chain,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16. New York, NY, USA: Association for
Computing Machinery, 2016, pp. 1032–1043. [Online]. Available:
https://doi.org/10.1145/2976749.2978428

[9] “Google OSS-Fuzz: continuous fuzzing of open source software,”
https://github.com/google/oss-fuzz, [Online; accessed 15 March. 2023].

[10] A. Fioraldi, D. C. D’Elia, and E. Coppa, “WEIZZ: Automatic
grey-box fuzzing for structured binary formats,” in Proceedings
of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ser. ISSTA 2020. New York, NY, USA:
Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3395363.3397372


