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AFLplusplus Project
- Started with the AFL fork AFL++

- In 2019

- Added a ton of community features

LibAFL is rewritten from scratch in Rust 🦀🦀🦀
Today we will talk about Fuzzing, LibAFL, and QEMU(lation)



See RC3 (2020)
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In This Talk

- Quick Fundamentals of
- Fuzzing

- QEMU

- Binary Instrumentation

- Snapshot-Fuzzing an Android Library on a 80 core server

- Adding sanitizers for Injections to binaries at runtime
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Fuzzing in a Nutshell
Fuzzing delivers a large amount of machine-generated inputs as 

quickly as possible to the target in order to find some objectives.
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Coverage-Guided Fuzzing

if (x < 1)

Do 
whatever

If (x != 0)

Do even 
more()

Do less 
please()

Do s.th. 
else()

Count how often 
these happen.

⤷ Feedback

⤷ Favor Inputs 
leading to
new edges

Basic
Block

- Fuzzer takes reached 

coverage as feedback

- Keeps the track of edges 

and favors new coverage 

- Orders of magnitude faster!

CFG
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Meet QEMU, the Quick Emulator
- Very popular full-system emulator

- CPU

- Memory

- Peripherals

- Support for a variety of ISAs (x86, aarch64, …, even hexagon)

- user-mode emulation support:
- Emulation of userspace software

- System call translation layer

- Can be (ab-)used to change syscall behavior :)



JIT Code Rewriting

Target
Binary 
Code

Disassemble & 
Lift

IR Compiler

Host
Binary 
Code

Run!

Intermediate 
Representation 
(IR)



��JIT Code Instrumentation

Target
Binary 
Code

Disassemble & 
Lift

Intermediate 
Representation 
(IR)

IR Compiler

Host
Binary 
Code

Run!

Instrumentation



Fuzz
Everything, 
Everywhere,
All at Once

LibAFL



AFL++ pew pew! bugs!



- Reinventing the wheel: code the same code to do that same thing, 

again and again

- Naive design: typically just a mutator

- Scaling: scaling to multi-core or -machine is hard

Custom Fuzzers Issues



LibAFL

- State-of-the-Art

- Portable

- Extensible

- Scalable

- Performant, thanks to compile-time abstractions in Rust



High level design

- LibAFL Core, the main library

- LibAFL Targets, the runtime code that lives in the target

- LibAFL CC, the library to write compiler wrappers

+

Many instrumentation options



Support for user- and system-mode (WIP), based on QEMU 8 

  +    = ❤

LibAFL QEMU



Why Emulate?
- Why not Compile-Time Instrumentation?

- Compiling is hard

- Toolchains are hard

- Source not always available

- Change instrumentation at runtime

- Advantages over other dynamic binary instrumentation:

- Cross architecture

- Reasonably fast while being stable
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if (x < 1)

Do 
whatever

If (x != 0)

Do even 
more()
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else()

Basic
Block
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Example: Edge Hooks

Instrumentation (in JIT) that is 
running callback functions

Before any jump, reports a unique id 
for the taken edge to a hook

Generation Hook:
fn(&mut Self, Option<&mut S>, src: GuestAddr, dest: GuestAddr) -> 
Option<u64> { … }

Execution Hook:
FnMut(&'a mut Self, Option<&'a mut S>, u64)

LibAFL QEMU Hooks



LibAFL QEMU Hooks

- Instructions

- Blocks

- Edges

- Read and write

- Comparisons

- Threads

- Syscalls

- Crashes
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Fuzzing With QEMU: Execution Control

LibAFL_QEMU

LibAFL Process

Commands Breakpoints

Backdoor

Target

GDB● Backdoor: target-defined point at 

which execution halts

● Breakpoint: fuzzer-defined point at 

which execution halts

● Commands: custom GDB commands to 

interact with the target state
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Target Library



Target Library



Reversing



Reversing



Harness
int QuramGetImageInfoFromFile2(char *filename, int zero1, int zero2,

                      int *w, int *h, int* getImageOut1, int* getImageOut2);

int QrParseMetadata(char *filename, unsigned int* metadata);

void harnessSimple(char* filename) {

  int w, h, a, b;

  unsigned int metadata[71] = {0};

  if (QuramGetImageInfoFromFile2(filename, 0, 0, &w, &h, &a, &b) == 0) {

    QrParseMetadata(filename, metadata);

  }

}



Target (QURAM Android Library)

Fuzzing Android Libs on a Host

LibAFL

Fuzzer

 Harness
 Syscall

 Hooks

Snapshot

& Restore

Instrumentation/Coverage Feedback

Input

LibAFL_QEMU
LibAFL
Process

Runs over 
and over



A Simple Fuzzer
    let mut args = vec!["qemu".into(), "./harness".into(), MAGIC_FILENAME.into()];
    let mut env: Vec<(String, String)> = env::vars().collect();

    let emu = Emulator::new(&mut args, &mut env);

    let mut elf_buffer = Vec::new();
    let elf = EasyElf::from_file(emu.binary_path(), &mut elf_buffer).unwrap();

    let harness_ptr = elf
        .resolve_symbol(HARNESS_NAME, emu.load_addr())
        .expect(&format!("Symbol {} not found", HARNESS_NAME));
    println!("{} @ {:#x}", HARNESS_NAME, harness_ptr);

    emu.set_breakpoint(harness_ptr);
    unsafe { emu.run() };
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A Simple Fuzzer

let ret_addr: u64 = emu.read_reg(Regs::Lr).unwrap();

println!("Return address = {:#x}", ret_addr);

emu.remove_breakpoint(harness_ptr);

emu.set_breakpoint(ret_addr);

let saved_cpu_states: Vec<_> = (0..emu.num_cpus())

    .map(|i| emu.cpu_from_index(i).save_state())

    .collect();



A Simple Fuzzer
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A Simple Fuzzer
let mut harness = |input: &BytesInput| {

    input.to_file(MAGIC_FILENAME).unwrap();

    unsafe { let _ = emu.run() };

    for (i, s) in saved_cpu_states.iter().enumerate() {

        emu.cpu_from_index(i).restore_state(s);

    }

    ExitKind::Ok

};
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A Simple Fuzzer
let mut hooks = QemuHooks::new(
    emu.clone(),
    tuple_list!(
        QemuEdgeCoverageHelper::default(),
        QemuCmpLogHelper::default(),
    ),
);

let executor = QemuExecutor::new(
    &mut hooks,
    &mut harness,
    tuple_list!(edges_observer, time_observer),
    &mut fuzzer,
    &mut state,
    &mut mgr,
)
.expect("Failed to create QemuExecutor");
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A Simple Fuzzer

         5.1k executions per second



- Snapshot-based Fuzzing

- AddressSanitizer to uncover silent heap corruptions

- Scalability over cores

A More Complex Fuzzer



QASAN Sanitization

- Sanitizers checks wider range of errors at runtime

- e.g. Illegal memory access

- Track all memory accesses

- Hook known libc/allocation functions (malloc/free, strcpy, …)

- Crash on out-of-bounds accesses, uaf, etc.



Userspace Snapshot
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Profit!
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Fuzzer Scaling

- Scaling is hard

- Not sharing events means lots 

of duplicated effort

- Communication slows them down

- Communication via:

- disk?

- network?

- intermittent restarts?

- something else?

From: https://github.com/gamozolabs/aflbench

AFL



Multi-Node Fuzzing: LLMP
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Scaling to 80 cores



Scaling Comparison: AFL and LLMP 

LibAFL w/ LLMPAFL



Scaling to 80 cores

462.8k executions per second
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& corruptions at the same time



- Coverage-based fuzzing is good at finding crashes like memory 

corruptions

- Unguided fuzzers like sqlmap are great at finding injection

vulnerabilities but only work on network targets and have no 

coverage

IDEA: Find injection vulnerabilities while doing normal

      AFL++/libafl style fuzzing!

Feedback Fuzzing == Only Crashes(?)



Use LibAFL-QEMU (usermode) hooks to:

- add injection tests to our mutation engine

- hook injection susceptible functions and analyze all queries

- crash if injection test is found unsanitized

Bonus: Having a flexible configuration script so users can easily

       modify what they want hunt for - and how

The Idea



Target 

Fuzzing for Injections

LibAFL

Fuzzer

 Harness

Instrumentation/Coverage Feedback

Input & 
Injections

LibAFL_QEMU
LibAFL
Process

using SQLite

using system

using …

using LDAP

Check parameters

HOOK

HOOK

HOOK

HOOK



- name: "sql"
  functions:
    - function: "sqlite3_exec"
      parameter: 1
    - function: "mysql_query"
      parameter: 1
  tests:
    - input_value: "'\"\"'"
      match_value: "'\"\"'"
    - input_value: "1\"' OR \""
      match_value: "1\"' OR"

Example: SQL injection configuration

sqlite3_exec() - Execute SQL 
statements

Definition:
int sqlite3_exec( sqlite3 *db, 
const char* sql, ... )

injections.yml

Injection into the 2nd 
parameter!



- False positives unlikely

- False negatives can happen - depending on your input + match config

- You can hunt for all kinds of injection vulnerabilities

⇒ CMD, LDAP, SQL, CSV, XML, XSS, …

- … all while doing coverage-guided fuzzing!

             All implemented using LibAFL QEMU APIs

Advantages/Disadvantages
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JOIN THE CULT

LibAFL is FOSS!

https://github.com/AFLplusplus/LibAFL

https://github.com/AFLplusplus/LibAFL


Conclusion

- Fuzz everything, everywhere, all at once

- Extremely scalable fuzzers

- QEMU is amazing

- We can fuzz Android libraries on a desktop machine

- We can hunt injections instead of boring crashes!

- with _mad speed_



while (questions());

char buf[16];
strncpy(buf, ""
    "Thank you for your attention."
    "\n", sizeof(buf));
printf("%s", buf);



Thanks y’all


