
Fuzz Everything, Everywhere, All at Once
Advanced QEMU-based fuzzing

Addison Crump <research@addisoncrump.info>
Andrea Fioraldi <andreafioraldi@gmail.com>

Dominik Maier <mail@dmnk.co>
Donjia “toka” Zhang <toka@aflplus.plus>
Marc “vanHauser” Heuse <marc@srlabs.de>

AFLplusplus Project
- Started with the AFL fork AFL++

- In 2019

- Added a ton of community features

LibAFL is rewritten from scratch in Rust 🦀🦀🦀
Today we will talk about Fuzzing, LibAFL, and QEMU(lation)

See RC3 (2020)

The AFLplusplus Project
Marc “vanHauser” Heuse

Andrea Fioraldi

Dominik Maier

Donjia “toka” Zhang

Addison Crump

Shmarya Rubenstein

Heiko "hexcoder-" Eissfeldt

 and a large community!

voluntary contributors,
 Full-time working/

 researching at:

and more

In This Talk

- Quick Fundamentals of
- Fuzzing

- QEMU

- Binary Instrumentation

- Snapshot-Fuzzing an Android Library on a 80 core server

- Adding sanitizers for Injections to binaries at runtime

Fuzz
Everything,
Everywhere,
All at Once

Fuzzing in a Nutshell
Fuzzing delivers a large amount of machine-generated inputs as

quickly as possible to the target in order to find some objectives.

Coverage-Guided Fuzzing

if (x < 1)

Do
whatever

If (x != 0)

Do even
more()

Do less
please()

Do s.th.
else()

Basic
Block

CFG

Coverage-Guided Fuzzing

if (x < 1)

Do
whatever

If (x != 0)

Do even
more()

Do less
please()

Do s.th.
else()

Count how often
these happen.

Basic
Block

- Fuzzer takes reached

coverage as feedback

CFG

Coverage-Guided Fuzzing

if (x < 1)

Do
whatever

If (x != 0)

Do even
more()

Do less
please()

Do s.th.
else()

Count how often
these happen.

⤷ Feedback

⤷ Favor Inputs
leading to
new edges

Basic
Block

- Fuzzer takes reached

coverage as feedback

- Keeps the track of edges

and favors new coverage

- Orders of magnitude faster!

CFG

Fuzz
Everything,
Everywhere,
All at Once

DynamicBinary Instrumentation

Meet QEMU, the Quick Emulator
- Very popular full-system emulator

- CPU

- Memory

- Peripherals

- Support for a variety of ISAs (x86, aarch64, …, even hexagon)

- user-mode emulation support:
- Emulation of userspace software

- System call translation layer

- Can be (ab-)used to change syscall behavior :)

JIT Code Rewriting

Target
Binary
Code

Disassemble &
Lift

IR Compiler

Host
Binary
Code

Run!

Intermediate
Representation
(IR)

��JIT Code Instrumentation

Target
Binary
Code

Disassemble &
Lift

Intermediate
Representation
(IR)

IR Compiler

Host
Binary
Code

Run!

Instrumentation

Fuzz
Everything,
Everywhere,
All at Once

LibAFL

AFL++ pew pew! bugs!

- Reinventing the wheel: code the same code to do that same thing,

again and again

- Naive design: typically just a mutator

- Scaling: scaling to multi-core or -machine is hard

Custom Fuzzers Issues

LibAFL

- State-of-the-Art

- Portable

- Extensible

- Scalable

- Performant, thanks to compile-time abstractions in Rust

High level design

- LibAFL Core, the main library

- LibAFL Targets, the runtime code that lives in the target

- LibAFL CC, the library to write compiler wrappers

+

Many instrumentation options

Support for user- and system-mode (WIP), based on QEMU 8

 + = ❤

LibAFL QEMU

Why Emulate?
- Why not Compile-Time Instrumentation?

- Compiling is hard

- Toolchains are hard

- Source not always available

- Change instrumentation at runtime

- Advantages over other dynamic binary instrumentation:

- Cross architecture

- Reasonably fast while being stable

Fuzz
Everything,
Everywhere,
All at Once

LibAFL
<3

QEMU

if (x < 1)

Do
whatever

If (x != 0)

Do even
more()

Do less
please()

Do s.th.
else()

Basic
Block

CFG

Example: Edge Hooks

Instrumentation (in JIT) that is
running callback functions

Before any jump, reports a unique id
for the taken edge to a hook

Generation Hook:
fn(&mut Self, Option<&mut S>, src: GuestAddr, dest: GuestAddr) ->
Option<u64> { … }

Execution Hook:
FnMut(&'a mut Self, Option<&'a mut S>, u64)

LibAFL QEMU Hooks

LibAFL QEMU Hooks

- Instructions

- Blocks

- Edges

- Read and write

- Comparisons

- Threads

- Syscalls

- Crashes

if (x < 1)

Do
whatever

If (x != 0)

Do even
more()

Do less
please()

Do s.th.
else()

Basic
Block

CFG

Fuzzing With QEMU: Execution Control

LibAFL_QEMU

LibAFL Process

Commands Breakpoints

Backdoor

Target

GDB● Backdoor: target-defined point at

which execution halts

● Breakpoint: fuzzer-defined point at

which execution halts

● Commands: custom GDB commands to

interact with the target state

Fuzz
Everything,
Everywhere,
All at Once

SanitizedAndroidSnapshotFuzzing

Target Library

Target Library

Reversing

Reversing

Harness
int QuramGetImageInfoFromFile2(char *filename, int zero1, int zero2,

 int *w, int *h, int* getImageOut1, int* getImageOut2);

int QrParseMetadata(char *filename, unsigned int* metadata);

void harnessSimple(char* filename) {

 int w, h, a, b;

 unsigned int metadata[71] = {0};

 if (QuramGetImageInfoFromFile2(filename, 0, 0, &w, &h, &a, &b) == 0) {

 QrParseMetadata(filename, metadata);

 }

}

Target (QURAM Android Library)

Fuzzing Android Libs on a Host

LibAFL

Fuzzer

 Harness
 Syscall

 Hooks

Snapshot

& Restore

Instrumentation/Coverage Feedback

Input

LibAFL_QEMU
LibAFL
Process

Runs over
and over

A Simple Fuzzer
 let mut args = vec!["qemu".into(), "./harness".into(), MAGIC_FILENAME.into()];
 let mut env: Vec<(String, String)> = env::vars().collect();

 let emu = Emulator::new(&mut args, &mut env);

 let mut elf_buffer = Vec::new();
 let elf = EasyElf::from_file(emu.binary_path(), &mut elf_buffer).unwrap();

 let harness_ptr = elf
 .resolve_symbol(HARNESS_NAME, emu.load_addr())
 .expect(&format!("Symbol {} not found", HARNESS_NAME));
 println!("{} @ {:#x}", HARNESS_NAME, harness_ptr);

 emu.set_breakpoint(harness_ptr);
 unsafe { emu.run() };

A Simple Fuzzer
 let mut args = vec!["qemu".into(), "./harness".into(), MAGIC_FILENAME.into()];
 let mut env: Vec<(String, String)> = env::vars().collect();

 let emu = Emulator::new(&mut args, &mut env);

 let mut elf_buffer = Vec::new();
 let elf = EasyElf::from_file(emu.binary_path(), &mut elf_buffer).unwrap();

 let harness_ptr = elf
 .resolve_symbol(HARNESS_NAME, emu.load_addr())
 .expect(&format!("Symbol {} not found", HARNESS_NAME));
 println!("{} @ {:#x}", HARNESS_NAME, harness_ptr);

 emu.set_breakpoint(harness_ptr);
 unsafe { emu.run() };

A Simple Fuzzer

let ret_addr: u64 = emu.read_reg(Regs::Lr).unwrap();

println!("Return address = {:#x}", ret_addr);

emu.remove_breakpoint(harness_ptr);

emu.set_breakpoint(ret_addr);

let saved_cpu_states: Vec<_> = (0..emu.num_cpus())

 .map(|i| emu.cpu_from_index(i).save_state())

 .collect();

A Simple Fuzzer

let ret_addr: u64 = emu.read_reg(Regs::Lr).unwrap();

println!("Return address = {:#x}", ret_addr);

emu.remove_breakpoint(harness_ptr);

emu.set_breakpoint(ret_addr);

let saved_cpu_states: Vec<_> = (0..emu.num_cpus())

 .map(|i| emu.cpu_from_index(i).save_state())

 .collect();

A Simple Fuzzer
let mut harness = |input: &BytesInput| {

 input.to_file(MAGIC_FILENAME).unwrap();

 unsafe { let _ = emu.run() };

 for (i, s) in saved_cpu_states.iter().enumerate() {

 emu.cpu_from_index(i).restore_state(s);

 }

 ExitKind::Ok

};

A Simple Fuzzer
let mut harness = |input: &BytesInput| {

 input.to_file(MAGIC_FILENAME).unwrap();

 unsafe { let _ = emu.run() };

 for (i, s) in saved_cpu_states.iter().enumerate() {

 emu.cpu_from_index(i).restore_state(s);

 }

 ExitKind::Ok

};

A Simple Fuzzer
let mut hooks = QemuHooks::new(
 emu.clone(),
 tuple_list!(
 QemuEdgeCoverageHelper::default(),
 QemuCmpLogHelper::default(),
),
);

let executor = QemuExecutor::new(
 &mut hooks,
 &mut harness,
 tuple_list!(edges_observer, time_observer),
 &mut fuzzer,
 &mut state,
 &mut mgr,
)
.expect("Failed to create QemuExecutor");

A Simple Fuzzer
let mut hooks = QemuHooks::new(
 emu.clone(),
 tuple_list!(
 QemuEdgeCoverageHelper::default(),
 QemuCmpLogHelper::default(),
),
);

let executor = QemuExecutor::new(
 &mut hooks,
 &mut harness,
 tuple_list!(edges_observer, time_observer),
 &mut fuzzer,
 &mut state,
 &mut mgr,
)
.expect("Failed to create QemuExecutor");

A Simple Fuzzer

 5.1k executions per second

- Snapshot-based Fuzzing

- AddressSanitizer to uncover silent heap corruptions

- Scalability over cores

A More Complex Fuzzer

QASAN Sanitization

- Sanitizers checks wider range of errors at runtime

- e.g. Illegal memory access

- Track all memory accesses

- Hook known libc/allocation functions (malloc/free, strcpy, …)

- Crash on out-of-bounds accesses, uaf, etc.

Userspace Snapshot

Stack

Text

Data

Changed Stack

Text

Changed Data

Track
changed
pages at
execution
efficiently

Reset
all
changed
pages,
etc. Reset Stack

Text

Reset Data

Profit!

Fuzz
Everything,
Everywhere,
All at Once

Scaling to cores and machines

Fuzzer Scaling

- Scaling is hard

- Not sharing events means lots

of duplicated effort

- Communication slows them down

- Communication via:

- disk?

- network?

- intermittent restarts?

- something else?

From: https://github.com/gamozolabs/aflbench

AFL

Multi-Node Fuzzing: LLMP

Broker

Fuzzing
Instance

Fuzzing
Instance

Fuzzing
Instance

...

sh
ar
ed

me
mo
ry

Multi-Node Fuzzing: LLMP

Broker

Fuzzing
Instance

Fuzzing
Instance

Fuzzing
Instance

...

sh
ar
ed

me
mo
ry

Eve
nt

Multi-Node Fuzzing: LLMP

Broker

Fuzzing
Instance

Fuzzing
Instance

Fuzzing
Instance

...

sh
ar
ed

me
mo
ry

E
v
e
n
t

Event

Scaling to 80 cores

Scaling Comparison: AFL and LLMP

LibAFL w/ LLMPAFL

Scaling to 80 cores

462.8k executions per second

Fuzz
Everything,
Everywhere,
All at Once

catch injections
& corruptions at the same time

- Coverage-based fuzzing is good at finding crashes like memory

corruptions

- Unguided fuzzers like sqlmap are great at finding injection

vulnerabilities but only work on network targets and have no

coverage

IDEA: Find injection vulnerabilities while doing normal

 AFL++/libafl style fuzzing!

Feedback Fuzzing == Only Crashes(?)

Use LibAFL-QEMU (usermode) hooks to:

- add injection tests to our mutation engine

- hook injection susceptible functions and analyze all queries

- crash if injection test is found unsanitized

Bonus: Having a flexible configuration script so users can easily

 modify what they want hunt for - and how

The Idea

Target

Fuzzing for Injections

LibAFL

Fuzzer

 Harness

Instrumentation/Coverage Feedback

Input &
Injections

LibAFL_QEMU
LibAFL
Process

using SQLite

using system

using …

using LDAP

Check parameters

HOOK

HOOK

HOOK

HOOK

- name: "sql"
 functions:
 - function: "sqlite3_exec"
 parameter: 1
 - function: "mysql_query"
 parameter: 1
 tests:
 - input_value: "'\"\"'"
 match_value: "'\"\"'"
 - input_value: "1\"' OR \""
 match_value: "1\"' OR"

Example: SQL injection configuration

sqlite3_exec() - Execute SQL
statements

Definition:
int sqlite3_exec(sqlite3 *db,
const char* sql, ...)

injections.yml

Injection into the 2nd
parameter!

- False positives unlikely

- False negatives can happen - depending on your input + match config

- You can hunt for all kinds of injection vulnerabilities

⇒ CMD, LDAP, SQL, CSV, XML, XSS, …

- … all while doing coverage-guided fuzzing!

 All implemented using LibAFL QEMU APIs

Advantages/Disadvantages

Fuzz
Everything,
Everywhere,
All at Once

Final Words

JOIN THE CULT

LibAFL is FOSS!

https://github.com/AFLplusplus/LibAFL

https://github.com/AFLplusplus/LibAFL

Conclusion

- Fuzz everything, everywhere, all at once

- Extremely scalable fuzzers

- QEMU is amazing

- We can fuzz Android libraries on a desktop machine

- We can hunt injections instead of boring crashes!

- with _mad speed_

while (questions());

char buf[16];
strncpy(buf, ""
 "Thank you for your attention."
 "\n", sizeof(buf));
printf("%s", buf);

Thanks y’all

